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Abstract—This paper presents a regularized mathematical formulation, necessary conditions of optimality
and solutions of problems of optimal design of solid, elastic, axisymmetric plates of prescribed total
material volume. Single-purpose design criteria of minimum static compliance (maximum stiffness) and
maximum frequency of free, trangverse vibrations, are considered.

The regularization, which alleviates some anomalies and difficulties encountered earlier in plate
optimization problems, is based on a new compound plate model with two simultaneous design variables,
namely, variable thickness of a solid part of the plate and variable concentration of a dense system of thin,
integral stiffeners attached to the solid plate part. A numerical, optimality-criterion-based method of
solution is developed for the problem, and several optimal designs are presented. The results are compared
with results obtained from optimal design formulations applied heretofore, and substantiate the superiority
of the new, regularized formulation.

L. INTRODUCTION

Problems of determining optimal thickness distributions for thin, solid elastic plates have
attracted considerable interest in the last decade. It is now accepted (1-4] that optimal solutions
do not exist to geometrically unconstrained problems, i.e. problems where no constraints are
specified for the plate thickness function, but that such problems may possess several local
optimal solutions. Quite naturally, it was speculated that specification of both maximum and
minimum constraint values for the plate thickness function would ensure a global optimal
solution[5], and several papers dealing with geometricaily constrained plate optimization
problems have indeed been published, see e.g. [6-8]. However, numerical difficulties are also
reported(7, 8].

As a matter of fact, it has recently been shown by the authors[9] that even if minimum and
maximum thickness constraints are considered, the traditional optimal design formulation,
where the plate thickness function is used as the only design variable, is, in general, inadequate.
The reason for this is that the aforementioned choice of design variable confines the design
space to the class of continuous functions or piecewise continuous functions with a finite
number of discontinuities, and the global optimal design does not generally belong to this class
of functions. Thus, the results of [9] clearly indicate that the global optimal design for a given
problem will, in general, be a plate which, at least in some sub-regions, is equipped with an
infinite number of infinitely thin stiffeners.

In order to be able to determine a possible global optimal plate design of this type, it is
therefore necessary to regularize the mathematical formulation of the geometrically constrained
optimization problem. In Refs. [10, 11], dealing with optimization of axisymmetric plates for
minimum compliance and maximum frequency of transverse vibrations, respectively, the
problems are regularized on the basis of a new plate model, which consists of a solid plate part
equipped with a dense system of infinitely thin integral stiffeners of variable concentration.
However, to gain simplicity in the numerical solution procedures in Refs. [10, 11}, the thickness
of the solid plate part is, in both papers, made equal to the minimum constraint value, i.e. the
concentration of integral stiffeners is treated as the only design variable in the numerical
examples. In spite of this restriction, the corresponding, simplified, integrally stiffened plate
model is superior to the traditional, solid plate model for a vast majority of problems, although
there are some exceptions[10]. In fact, the possible global optimal design of a thin elastic plate
must be expected to be a compound plate, which contains both integrally stiffened sub-regions

}Visiting from the Department of Solid Mechanics, The Dalien Engineering Institute, Dalien, The People’s Republic of
China.

153



154 K.-T. CHENG and N. OLHOFF

and purely solid sub-regions of variable thickness. However, the aforementioned restriction
introduced in Refs. [10, 111 has prevented us from obtaining optimal plate designs of this compound
type.

The present paper is a follow-up of Refs. [10, 11], with the objective of determining possible
global optimal plate designs of the compound type. In Section 2 we formulate the minimum
compliance design problem for axisymmetric plates on the basis of the generalized, new plate
model, that is, we apply both the thickness of the solid plate part and the concentration of
attached integral stiffeners as design variables. The necessary conditions of optimality are
derived in Section 3, and we develop some theoretical results concerning the behaviour of the
optimal design in the neighbourhood of plate edges of different boundary conditions. The
problem of optimizing an axisymmetric plate for maximum frequency of free, transverse
vibrations is taken up in Section 4, and it is shown that the previous developments of the paper
can, either directly or in a very simple manner, be extended to this problem. Finally, in Section
5 we present several solutions to the regularized formulations of the two kinds of optimization
problems considered, and comparing them to solutions obtained to earlier formulations in the
literature, ascertain the superiority of the regularized formulation. A numerical solution
procedure based on successive iterations is given in an appendix.

2. A MATHEMATICAL REFORMULATION OF THE OPTIMAL
DESIGN PROBLEM FOR AXISYMMETRIC PLATES

We consider the problem of finding the theoretically best plate model and mathematical
formulation for optimal design of axisymmetric, thin, elastic, solid plates, whose thickness h is
variable and identifies the distance between the upper and lower plate surface, which are
assumed to be disposed symmetrically with respect to the plate mid-plane. The total plate
volume is assumed to be specified, and in addition, maximum and minimum constraint values
hmex and h, for the plate thickness function, pertinent material properties, the inner and outer
radii of the plate (which may be annular), and the boundary conditions, are assumed to be
given.

For exemplification, in the present and the following main section, we consider minimum
compliance, i.e. maximum integral stiffness, as the design objective. We adopt a polar
coordinate system with origin in the plate centre, and assume for the minimum compliance
problem that the distribution of static load p(r, 8) is of the special type

p(r, 8) = f(r) cosn 6, 0]

where f(r) is a given, §-independent function, and n, a given integer. If homogeneous boundary
conditions are specified for the axisymmetric plate, the plate deflection function W(r, 6) then
attains the simple form

W(r, ) = w(r)cosn 8, @
where w(r) is independent of 6.

2.1 Traditional formulation

In the traditional formulation for optimal design, the plate thickness h(r) is used as the
design variable, and the optimal solution is assumed to be a solid plate. In dimensionless form,
where the inner and outer radii for an annular plate are R; and 1, respectively, and we have
R; =0 for a full plate, the problem is posed as follows

With h(r) as the design variable, minimize

1r=I f(nw(ryrdr 3
1]
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subject to the constraints

f h(rdr=1,
[4]

hmin = h(r) = hmax;
where
reQ{riRi=r=1}.

Within this formulation, the optimal thickness distribution h(r) is sought in the class of
continuous functions or piecewise continuous functions with a finite number of discontinuities,
and the plate bending rigidity D is assumed to be isotropic, i.e. independent of orientation, and
given by D = Eh(r)*/12(1- v*), where E is Young’s modulus and » is Poisson’s ratio of the
plate material. The optimization problem has been considered in this form in several papers, see
e.g. Refs. [6-8). However, as has recently been shown by the authors[9], the optimal thickness
distribution will generally not belong to the aforementioned class of functions. As a matter of
fact, if the given constraint values h,,, and h,;, differ sufficiently from each other, the optimal
thickness function will exhibit an infinite number of discontinuities in certain sub-regions of the
plate domain (). Optimal thickness functions of this type can obviously not be determined on
the basis of the traditional formulation, and it is therefore necessary to reformulate the
optimization problem.

2.2 New, regularized formulation with two design variables

In order to be able to determine a possible global optimal design subject to any given set of
values of h,,, and h,, for an axisymmetric plate, we now expand our design space by
constructing a new, generalized plate model. This model covers an axisymmetric, integrally
stiffened plate consisting of a solid part of variable thickness h,(r), 0 < by, < b, < h,, that is
equipped with a system of infinitely thin integral stiffeners of variable concentration u(r).
Figure 1 shows a radial section through a small ring element of the plate. The element has the
radial extent Ar and is equipped with a finite number of stiffeners. Each stiffener is circum-
ferential, has rectangular cross-section of height h,,, — h,, and is placed symmetrically with
respect to the plate mid-plane. The concentration u(r) (or density) of the integral stiffeners is
defined by

Ac;
H(’)=£3 ‘Ar , O=su(nsl, )

where Ac; is the width of the i’th stiffener of the element.

Fig. 1. Radial section through axisymmetric, integrally stiffened plate element of small radial extent Ar,
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Note that this plate model, for u(r)=0 and h, = h, reduces to the solid plate of variable
thickness h(r) used in the traditional formulation for optimal design. On the other hand, for
1(r)#0 and h, = hy,,, the model comprises another special case, namely the integrally stiffened
plate model with u(r) as the only design variable, which has very recently been used in Refs.
{10, 11] for determining a number of numerical results that are superior to results obtained by
means of the traditional formulation.

While integrally stiffened plate regions are excluded by the former special case plate model
(=0, h,=h), and solid regions of intermediate thickness are excluded by the latter (u#0,
h, = hy), it is our objective in the following to demonstrate by means of a number of
numerical results that the new generalized plate model is superior to those applied previously.
In fact, it turns out that the optimal plate will, in general, be a compound plate that contains
both sub-regions with integral stiffeners and sub-regions that are purely solid and of inter-
mediate thickness.

By means of the new plate model with its two design variables u(r) and h,(r), we now
reformulate the plate optimization problem as follows:

With h,(r) and p(r) as design variables, minimize

T =f f(w(rrdr
1]
subject to the constraints

[ B0+ e hgae = I a7 =1,
hmin = h.r(r) s hmam (5)

O<u(rsl,
where

rerlRi=r=t}.

Now, since the optimal plate is geometrically anisotropic (cylindrically orthotropic) in
possible sub-regions with 0 < u(r) <1, it is necessary to consider the plate bending rigidity as a
tensor (i.e. to depend on orientation) in the moment-curvature relationships (Hooke's law) for
such sub-regions of the plate. In Refs. [10, 11] the components of the bending rigidity tensor are
determined via two different paths, and we therefore just cite the results in what follows.

On the basis of Kirchhoff plate theory and with deflections in the form of eqn (2), the
9-independent factorials «,,, kg and «,, of the radial, circumferential and twisting curvatures
are given by

' 2

W nw nw\’
Ko = W', Koo =07 ""’="(T), ©

respectively, where primes denote differentiation with respect to r. The moment-curvature
relations read[10]

My, = D,(k,, + vKgy), Mg = Dy(Kog + vK,), Mg = Dg(1 — v)y (7a)
or in inverse form,

_ vim, — vmg) Mgy — VM,

= =
Ky V,.D,o(l — Vz) , Koo = D,o(l — Vz)’ Ko Dro(l — V)’ (7b)

where m,,, my and m,, are the 6-independent factorials of the radial and circumferential
bending moments and the twisting moment, respectively. In eqns (7a,b), » is Poisson’s ratio of
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the isotropic, linearly elastic plate material, and the components D,, D, and D, of the plate
bending rigidity tensor, together with the symbol », are given by[10, 11}

Dy, D,

- —— XS
D= b0y

Dy = uDgye + (1~ D,y Dy =(1- 19Dy + ¥2D, v, = ug‘, ®)
(4

respectively, where D,., and D, are suitably non-dimensionalized scalar bending rigidities
defined by

DII‘IIX = h:‘llx’ D’ = hls‘ (9)

Equations (7a, b) express by means of eqns (8) and (9) the moment-curvature relationships
in possible cylindrically orthotropic sub-regions of the plate where 0 < u(r)<1 and A, < h,,,.
However, the above equations reduce precisely to the corresponding well-known relationships
for isotropic plates in those sub-regions in which the plate is purely solid, that is, where u =0
(purely solid sub-region with plate thickness h,, Ani, < A, < h,,,), ot where u =1 (purely solid
sub-region with plate thickness A,..,). Consequently, we can apply eqns (7a, b)«9) throughout the
plate in the following.

3. NECESSARY CONDITIONS FOR OPTIMALITY

The governing optimality equations for the regularized minimum compliance design problem
(5) can be derived by variational analysis. The compliance  in (5) can alternatively be written
as [10]

= J; (D1~ vy + 21 = )icty] + Dy (s + vae)} 4, (10)
and we may use this expression in constructing an augmented functional 7* defined by
= L {Dof(1 = 53 + 2(1 — V)K%] + D,k + vee )V} r dr
- A{L [h, + s~ B 71}
—fn,\[h,—h,,.ﬁa’]rdr—fnﬁ[h,.i,.—h,+rz]rdr (1)

—j Yiu=1+&rdr— [ aln’-urdr,
N [1]

where the constraints in (5) are adjoined to the functional = of eqn (10) by means of the
Lagrangian multipliers A, A(r), B(r), ¥(r) and a(r), and where the real slack-variables o(r), 7(r),
&) and n(r) are introduced for converting the inequality constraints on A,(r) and u(r) to
equality constraints,

The necessary condition for stationarity of 7* with respect to the design variable u(r) is
now found to be

(Do — D)I(1 - )% + 21 — v)it] + D3 (Di— D' ) (K, + Vi) (12)

= A(hmax - h:) + ‘Y(’) - a(’)v
and the stationarity condition with respect to the design variable k,(r) becomes

3K3(1 = w1 = e+ 21 - o)) + 22 D2, + v

s

=All —u)+ A(r)-B(r). (13)
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Conditions of stationarity of #* with respect to the Lagrangian multipliers A, A, 8, v and «
reestablish the plate volume constraint and the maximum and minimum constraints on A,(7) and
u(r) in (5), and stationarity with respect to the slack variables o, 7, £ and 7 leads to switching
conditions which, when combined with the constraints on A, and u, may be expressed together
with appropriate Kuhn-Tucker conditions as follows,

¥(r =0, a(r) =20 if u(r) =0
y(r)=0, alr) =0if 0 <u(n<l (14)
y(N=0, a(r) =0 if u(r) =0
and
’\(’)=0o B(’)ZO lf h: =hmin
A =0, B(N =0 if hpyin<h,(r)<hg., 15)
A(N=z0, B(r=0if h, = hp,,.

Equations (12) and (13) above constitute the two optimality conditions that are associated
with the regularized formulation of the problem. The left-hand sides of these equations identify
the gradients of the specific strain energy with respect to u(r) and h,(r), respectively, and
taking eqns (14) and (15) into account, eqns (12) and (13) show that in sub-regions where one of
the design variables u(r) and h,(r) is unconstrained, the gradient of the specific strain energy
with respect to the particular design variable, should be constant.

By means of eqns (12)—(15), we are now able to derive specific conditions for the occurrence

of sub-regions with integral stiffeners and of purely solid sub-regions of intermediate thickness in
the optimal design.

3.1 Necessary condition for sub-regions with integral stiffeners
An integrally stiffened sub-region is characterized by

0<u() <L, hpin < Ay(P) < hpax. (16)

In view of inequalities (16) and the second of eqns. (14), eqn (12) reduces to

_ 2
Do 2s (1 el + 21 - Ikl o (3 ) (ke ol = A (1)

Taking inequalities (16) and the first two of eqns (15) into account, we may express eqn (13) as
321 = Pl + 20 = V)ick) + 3 Doy + v < A. (18)

Eliminating A between eqn (17) and inequality (18), and expressing D,, D, and D,,, in terms of
u, h, and h,,, by means of eqns (9) and the first of eqns (8), we after dividing through by
h.ex — h, Obtain the necessary condition

3 2
]2 Do s (174 2+ 3 + v
(19)

(Zh: + hmlx)[(l - VZ)K%O*' 2(] -

for an integrally stiffened sub-region in the optimal design of a rotationally symmetric plate.

3.2 Necessary condition for purely solid sub-regions of intermediate thickness
A purely solid sub-region of intermediate thickness is associated with

‘l'(r) = 0’ hmm < hl(’) < hmax' (20)



Regularized formulation for optimal design of axisymmetric plates 159

By eqns (20) and the first of eqns (14), and noting that D, = D, for u =0, the optimality
condition (12) may thus be written as

Dous= s (1~ e+ 201 - v+ EIL (1 = A, @n

while the optimality condition (13) reduces to
3h2(1 - v)Kde + 2(1 — )&% ]+ 3R (K, + VK = A (22)

since h, is unconstrained and p#0.
Combining eqns (21) and (22), using eqns (9), and dividing through by k., — k., we obtain
the inequality

2h, + hyu (1= K3+ 2(1 — )ik <

2
+ HhT‘ (h2+2hh, . + 3h:,,,)(x,, + Vo), @3)

max

which constitutes a necessary condition for a purely solid sub-region of intermediate thickness in
the optimal design of a rotationally symmetric plate.

Unfortunately, it does not seem possible to derive specific conditions for purely solid
sub-regions of minimum thickness A, or maximum thickness h,,, on the present basis.

3.3 Behaviour of the optimal design in the vicinity of plate edges

At a simply supported or free plate edge, we have m, =0, which is equivalent to
K, + vige = 0, since singular behaviour is excluded via the condition that A,( = k) > 0. With
Ky + VKge = 0 and (1 - 1Y)k} + 2(1 — ¥)k% > 0 in general for a simply supported or free edge, and
2h, + heyy > 0, it is readily seen that the condition 23) is not satisfied.

Hence, a purely solid sub-region of intermediate thickness will never appear at a simply
supported or free edge of an optimally designed rotationally symmetric plate. The optlmal plate
will either be integrally stiffened (note that condition (19) is satisfied) or solid with minimum or
maximum thickness in the vicinity of a simply supported or free edge.

At a clamped edge r = r* of an axisymmetric plate, we have w(r*)= w'(+*) =0, and hence
Kko(7*) = K,o(r*) = 0. In view of the latter conditions, the fact that k,> + 2h,hp,, + 343, > 0and that
(k. (r*) + vioe(r*))* > Oin general for a clamped edge, we see that condition (19) fails to be satisfied.

Thus, a sub-region with integral circumferential stiffeners will not be found at a clamped edge of
an optimally designed rotationally symmetric plate. In the vicinity of such an edge, the plate will be
purely solid, and its edge thickness will belong to the interval Ay, < A; < Ay,

The above results constitute a generalization of some very recent results obtained in [11] for
a slightly different problem by means of the Kelley condition from optimal control theory.

3.4 Discussion

The necessary condition (23) for optimality of a solid sub-region of intermediate thickness
may be expressed in an alternative way. Firstly, define a thickness parameter a by

@ = 7{%‘ 4

write inequality (23) as

(ky + wcgg)z o 1+2a
K2+ 20Kee + K3+ 2(1 - ¥)kY ~ (1+ a + a)?

(25)

and note then that since u(r)=0 in a solid sub-region of intermediate thickness h,, the
moment-curvature relationships (7a or b) reduce to those that are valid for solid, isotropic
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plates, i.e.
mrr = h.vz(Krr + VKoo), m“ = hsJ(Koo + VKrr)r mrﬂ = h.rs(l - V)Km- (26)
Then, using eqns (26) to eliminate the curvatures in (25), we obtain

m?, - 1+2a
m2 —2um,mg+ m3+2(1+ v)m% = (1- (1 + a + a??

@7

which constitutes an alternative to inequality (23). The necessary condition (27), which the
moments and the plate thickness h, = ah,,, must satisfy for optimality of an intermediate,
purely solid sub-region, is very similar to one derived in Ref. [12], eqn (I164). The only
difference is that the moments of the two conditions refer to different structures.

Let us now consider the special case where our plate is subjected to axisymmetric load
(n =0). Then, the §-independent factorial m,; of the twisting moment vanishes everywhere, and
introducing the moment parameter A by

A="er 28)

inequality (27) may be cast in the form

142«
A+ A (=D +tat )

(29)

This inequality partitions the A —a plane into two separate regions, see Fig. 2 (which
presumes v = 0.25). In Fig. 2, combinations of A and a for which inequality (29) is not satisfied,
fall in the hatched region. Consequently, combinations of A and a calculated on the basis of the
thickness and moments at points belonging to an intermediate, purely solid sub-region in an
optimal design must be within the unhatched region. At a clamped plate edge, for example, we
have A = my/m, = v, and the figure illustrates that for values of a belonging to the interval
Rin Bax < @ < 1, all combinations of A and « will lie within the unhatched region, which
implies that a purely solid sub-region of intermediate thickness is optimal in the neighbourhood
of the clamped edge. If a = h,;./h,., OF @ =1 at the clamped edge, the optimal plate will be

a=hy/Npqy

NO PURELY SOLID DESIGN NO|PURELY SOLID DESIGN

sLi e bl PO Joobradolbead
=0 % 0.0 05 10 i
A=Mgg /Mpp

Fig. 2. A —a diagram for axisymmetric plates (v = 0.25) optimized for minimum static compliance under

axisymmetric load or maximum fundamental natural frequency of transverse vibrations (n =0). If the

combination (A, a) for a given plate point falls in the hatched area of the diagram, the optimal design cannot
be purely solid at the point considered.
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solid and of thickness h, = A, OF B, = By, respectively, at the edge. At a simply supported or
free edge, A -+, and any combination of A and a will then lie in the hatched region of Fig. 2,
which means that either an integrally stiffened sub-region or a purely solid sub-region of
thickness h, = by, OF A, = By,,, respectively, will be optimal near the simply supported or free
edge.

Figure 2 may be compared with Fig. 7 of Ref. [10]. In spite of their strong resemblence,
these two figures are different. The latter figure is not restricted to axisymmetric plates, as the
local direction of the stiffeners may be chosen optimally. Figure 2 of the present paper,
however, is obtained under the assumption that all the stiffeners follow the circumferential
direction of the plate. This clearly limits the efficiency of the stiffeners, and it is therefore not
surprising that the unhatched region with optimality of purely solid sub-regions is much larger
in Fig. 2 of the present paper than in Fig. 7 of Ref. [10].

4. DESIGN FOR MAXIMUM TRANSVERSE VIBRATION FREQUENCY
Consider now the-problem of determining the optimal thickness distribution for a solid,
elastic, axisymmetric, annular (or full) plate, which, for given total volume, plate radii,
boundary conditions and elastic moduli, maximizes the smallest natural frequency w, cor-
responding to a vibration mode

W(r, 8) = w(r)cos nd (30)

that has a prescribed number n (n=0) or nodal diameters. Again, the plate optimization
problem is geometrically constrained, that is, minimum and maximum constraint values, A,
and h,,,, respectively, are specified for the plate thickness function.

To extend the design space relative to earlier results, we use the new plate model shown in
Fig. 1 and apply both the concentration u(r) of integral stiffeners and the thickness h, of the
solid part of the plate as design variables. Hence, the following regularized formulation of the
problem is considered:

With h,(r) and u(r) as design variables, maximize

) L {D(N(1 = 97K 3e(r) + 21 = )ic3(P)] + D1k, (r) + vicog(r)}r dr

o
L [() + (e — B (P)IWA(P)r dr

subject to the constraints

L () + 1N s~ B A7 = 1, B < By(P) < By 0= (D)< 1, )

where
rEQ{rIR;S rs<s ]}.

The problem is in non-dimensional form, and the first of eqns (31) expresses the Rayleigh
quotient for the new plate model in transverse vibration of the type (30), see {11]. The bending
rigidity moduli D,y and D, for the new plate model are defined in eqn (8), and the curvatures «,,,
Kkee and K,y are given in terms of the #-independent factorial w(r) of the deflection and the
number n of nodal diameters by eqns (6). The second of eqns (31) expresses in dimensionless
form the fact that the total plate volume is given.

To derive the necessary conditions for optimality, we apply calculus of variations and
construct a functional F by adjoining to the expression for w,’ in the first of eqns (31), the
subsequent constraint conditions in eqns (31) by means of the Lagrangian multipliers A, A(r),
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B(r), y(r) and a(r), i.c.

f {Doal(1 = )%, + 21 = v)i2y] + Dy, + viceg)r dr

[ 1h+ s~ B 0
—A{L[h,+y(h,,.,—h,)]rdr—l}

- I Alh, - oy + 0%Jrdr— f Blh. — b, +7rdr 32)
0 n

'I 7[#—1+§2]’dr—f aln?—ulrdr.
[t f1]

The Euler-Lagrange equation expressing stationarity of F with respect to the design variable
u(r) is now

(Dass= D)1 = )+ 21 = )1+ D (= ) G + vl
—(0( max h)W A(hmx h:)_‘)l(r)+a(r)= s (33)

and stationarity with respect to the design variable A,(r) leads to

3hX(1 = w)(1 = )iy + 2(1 - p)i2y] +%ﬂ0}(xﬂ + i)
— &1 - )W = A(1 - )~ A(r) + B(r) = 0. (34)

In the derivation of eqns (33) and (34), it is assumed that the vibration mode w is normalized
according to

fn By + (s — B)IW2r dr = 1. (35)

Equations (33) and (34) constitute the so-called optimality conditions for the plate frequency
optimization problem, and were first derived in Ref. [11] by means of optimal control theory.
These optimality conditions are seen to be the same as the corresponding conditions (12) and
(13) for the static compliance minimization problem, except that they both contain an additional
non-linear term pertaining to the dynamic nature of the problem.

Finally, stationarity of F with respect to variation of the Lagrangian multipliers A, A(r),
B(r), y(r) and a(r) recovers the constraints in eqns (31), and stationarity with respect to the
slack-variables o(r), (r), &(r) and n(r), together with appropriate Kuhn-Tucker conditions,
gives us the switching conditions in the same form as eqns (14) and (15).

Let us now consider the question concerning conditions for integrally stiffened sub-regions
and purely solid sub-regions of intermediate thickness, respectively, for the plate frequency
optimization problem. For a sub-region with integral stiffeners, we have 0 < u(r) <1, hgyn <
h,(r) < hpay, and hence A(r) = y(r) = a(r) =0, B(r)=0, sce eqns (14) and (15), which implies
that optimality conditions (33) and (34) reduce to

Pous = Do 1 e, + 201 - i) + D (3-3 ) 6+ vl = W= A (36)
hmu : * r hmx—h: D: Dmx ” it

and

3h2(1 - v+ 2(1 - v)i%] +o3 Dz(x,, + vKge)? — WIWE A, 37N
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respectively, which may be compared with eqns (17) and (18). Eliminating A between eqns (36)
and (37), as in the linking of eqns (17) and (18) earlier, the additional term —w?w? drops out, and
we end up with the result that the necessary condition (19) also holds good for integrally
stiffened sub-regions (with 0 < u <1, hypio < h, < hy,,) in optimal plates of maximum vibration
frequency. Similarly, we easily find that the necessary condition (23) also governs optimality of
a purely solid sub-region of intermediate thickness (i =0, hyi, < hy < hyy,) in optimal plates of
maximum vibration frequency.

It follows from the results just cited that all the results and conclusions of Sections 3.3 and
3.4 hold good for the plate vibration frequency optimization problem as well. Hence, as is
anticipated in Refs. [9, 10], the idea of investigating inherent features of plate optimization by
considering the design criterion of minimum static compliance, which is simpler than other
design criteria, is fully justified.

5. NUMERICAL RESULTS AND DISCUSSION

This section presents numerical solutions to the regularized formulations for minimization
of plate compliance and maximization of plate vibration frequency considered in the foregoing.
The solution procedure is outlined in the Appendix. The solutions are obtained by sub-dividing
the plate into 100 elements in examples of compliance minimization, and into 150 elements in
examples of frequency maximization. In the following, the compliance = or frequency w, of
each optimal plate will be stated in proportion to the corresponding compliance m, or frequency
w,* of a purely solid, uniform reference plate of thickness A, that has the same total volume,
plate radii and boundary conditions, and is made of the same material as the optimized plate.
Poisson’s ratio of the plate material is taken to be » =0.25. In the examples of compliance
minimization, the uniform reference plate is, of course, subjected to the same static loading as
the optimal plate. Although we are able to cope with arbitrary static loading in the form of eqn
(1), we take f(r) = const. in the examples of compliance minimization.

Figures 3-5 show radial sections through optimal, axisymmetric plates. In each figure, the
unhatched area indicates the solid part of the plate, whose thickness is h,(r), and hatched areas
indicate that integral stiffeners of total height (h.,, — h,) are placed symmetrically with respect
to the plate mid-plane. The sum of the extents of the upper and lower hatched areas in the
normal direction at a specific value of the radial coordinate r, represents u(r) « (Apay — (1)) of
the design. This function is plotted to the same scale as h,(r) in the figures, and illustrates the
material consumption of the integral stiffeners by an equivalent thickness of purely solid
material. The solid curve shown above each plate is the #-independent factorial w(r) of the
deflection function. Different scales are used for these curves in the figures.

Figures 3(a)~(c) show minimum compliance designs of axisymmetric, annular plates with
clamped inner and outer edges. The designs all have h,/h;, = 1.6579, b/ Amin = 5 and R, = 0.2,
and they serve to illustrate the influence on the optimal design of the circumferential wave
number #n of the external loading, eqn (1). The optimal design in Fig. 3(a) corresponds to n =0,
i.e. axisymmetric load, and the designs in Fig. 3(b) and (c) correspond to n =2 and n =4,
respectively, i.e. loads of the form p(r, 8)=const-cos26 and p(r, 8) = const - cos 4. The
compliances of the optimal designs are found to be =/, = 0.463, 0.491 and 0.357, for n =0, 2
and 4, respectively.

The results in Fig. 3 clearly show that the significance of integral, circumferential stiffeners
increases with increasing n. In the case of axisymmetric load, the optimal design, Fig. 3(a), is
almost entirely a purely solid plate, and only an examination of the numerical data reveals that
a small sub-region with very low stiffener concentration is present. However, for n =4 (Fig.
3c), most of the material volume, which is available for design in view of the minimum
thickness constraint, is used for formation of stiffeners, and only small, solid sub-regions of
intermediate thickness are found near the clamped edges of the plate.

Figures 4(a)-(c) show three full circular plates optimized for maximum fundamental natural
frequency (n =0). The plates all have clamped edges and hJh,;,=1.5915, and the only
difference in their design conditions is that different values of the ratio A/l are specified,
namely Apay/Bemin =5, 10 and 15 in Figs. 4(a), (b) and (c), respectively.

By mutual comparison of Figs. 4(a)-(c), we see that an increasing part of the plate volume is
used for-the formation of integral stiffeners as the maximum thickness constraint value h,,, is
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Fig. 3. Axisymmetric annular plates of minimum compliance subject to different loads p = const - cos né.
The designs correspond t0 i hyin = 16579, Mus/haia = 5, Ri = 0.2 and » = 0.25. Plate edges are clamped.
(@) n=0, nlm, =0463; ) n =2, alm, =0.491; (c) n =4, mm, =0357.
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Fig. 4. Axisymmetric, clamped plates of different h,,, /A, ratios optimized for maximum fundamental

natural transverse vibration frequency, wo. (8) fpau/Pmin =35, @olwe* = 1.43; (0) Ryar/Bin = 10, wglwe* =

2.06; () Mmas/Bgin =15, wo/aw” =2.72. The plates have equal volume, given by h/h,, = 15915, and
Poisson’s ratio is » = 0.25 for the plate material.-
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increased. Coincidently, we find that the value of the optimal fundamental frequency w,
increases with h,,,, viz. wo/w” = 1.43, 2.02 and 2.72 for Aue./hyi =35, 10 and 15, respectively.
This is in perfect agreement with the fact that the fundamental natural frequency of a plate can
be increased indefinitely by geometrically unconstrained optimization. Note also the circum-
ferential stiffeners do not arise near the clamped plate edges of Figs. 3 and 4, but that purely
solid sub-regions of intermediate thickness are found in their vicinities.

Figures 5(a)-(e) show minimum compliance designs (Figs. 5a,b) and maximum frequency
designs (Figs. 5c-e) of annular plates of different boundary conditions (see the figure caption).
These numerical solutions are obtained for A,/ Ami =5, A hmin = 1.6579 and n =4, and serve
to illustrate the theoretical predictions of Sections 3.3 and 5 for the behaviour of the optimal
design near plate edges.

In agreement with the theoretical predictions, and independently of the design criteria, we
see that the clamped edges only have purely solid sub-regions in their vicinities, and that the
free and simply supported edges have either stiffened sub-regions or purely solid ones of
hy = Ry OF h, = h,,, (but never hn;, < b, < hy,,) in their neighbourhood.

Let us now compare a series of minimum compliance results obtained by the present
formulation for optimal design to corresponding results obtained by earlier formulations. All the
results pertain to n =4 for annular plates with R; = 0.2, Apey/hmin =5 and hJhy,;, = 1.6579, and
are given in Table 1. The first column in Table 1 lists three different combinations of boundary
conditions at the inner and outer plate edge. Each of the next three columns list, for each set of
plate boundary conditions, the ratio =/w,, where the plate compliance # is minimized in
applying a particular formulation for optimal design. Within any given row of the table, the
design conditions and the value , for a uniform, solid reference plate of the same boundary
conditions are, of course, the same. Now, in the second column from the left, minimum values
of # are determined via the traditional formulation (u =0), and the results are quoted from Ref.
[9]. The third column presents minimum values of 7 obtained by means of the integrally
stiffened plate formulation where h,(r) = h,,;, and only u(r) is treated as design variable. These
results are taken from Ref. [10]. Finally, minimum compliances = determined on the basis of
the regularized formulation of the present paper, where both wn(r) and h(r) are design
variables, are listed in the fourth column of Table 1.

On the basis of the results in Table 1, we are able to conclude that the regularized optimal
plate design formulation of the present paper is superior to the earlier formulations. Since our
new formulation implies an expansion of the design space and contains the design spaces of
each of the earlier formulations as sub-spaces, it must, of course, for any given problem, be
expected to offer a solution that is at least as good as the best solution offered by the earlier
formulations. Table 1 demonstrates that results following from our new formulation will, in
general, not be not just as good as, but significantly better than, results obtained from the earlier
formulations.

The physical reason for the superiority of the present formulation over the formulation with
h, = hy, is clearly that the axisymmetric plate is offered the possibility of increasing locally its
radial stiffness by forming sub-regions of intermediate thickness. If we expand our design space
further by dropping the condition of axisymmetry, it is quite obvious that the plate would
increase its radial stiffness by forming an additional field of stiffeners, and that solutions with
even more optimal characteristics could be obtained.

Table 1. Comparison of minimum compliances = for axisymmetric annular plates determined via three
different formulations for optimal design. The results correspond to n =4, R, =0.2, h/h,, = 1.6579,
Rnay/ Hein = 5 and » =0.25

wlw,
Boundary conditions  Traditional Formulation Regularized
at inner and outer formulation with k, = h,;,, formulation of
plate edge (n =0), from [9] from [10] present paper
c!ampcd-clampcd 0.536 0415 0.357
simply supp.-clamped 0.564 0.407 0.351

free-clamped 0.617 0.404 0.349




{a)

(b}

{c}

ta}

(e}

Fig. 5. Optimal, axisymmetric annular plates of different boundary conditions. The plates have hJh,,;, =

1.6579 and hpa,/hoie = 5, and correspond to n = 4. Figs. 5(a), (b) illustrate minimum compliance designs. (a)

Free inner edge and clamped outer edge, o/, =0.349; (b) simply supported-clamped plate, m/w, =0.351;

(see Fig. 3(c) for the corresponding clamped-clamped plate). Figs. 5(c)-(¢) show maximum transverse

vibration frequency designs. (c) clamped-simply supported plate, w/o® =191; (d) free-clamped plate,
adw® =177, (¢) clamped-clamped plate, w,fw* = 1.76.
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The authors believe that the designs presented in this paper are global optimal designs
within the type of plate topology considered here. However, these designs are obtained as
solutions to a somewhat idealized mathematical formulation, and it is obvious that they must be
regarded as limiting designs from the point of view of practical application.

In practice it is necessary to modify the design, which implies a less optimal value of the
performance index. Let us therefore end this paper with an assessment of the sensitivity of the
current type of optimal designs with respect to their most necessary type of modification,
namely lumping the system of infinitely many, infinitely thin integral stiffeners into a finite
number of stiffeners of finite width (to meet non-buckling requirements, e.g.). As an example,
consider the optimal design of Fig. 3(c); sub-divide it into 3, 4, 5 and 6 sections, respectively;

Table 2. Compliances = of optimized and modified designs of a clamped-clamped
annular plate with # =4, R, = 0.2, h Ry, = 1.6579, hppyfhin =5 and » =025

7,
Traditional formulation (u = 0) 0.536  from [9]
Formulation with A, = h,, 0415  from [i0]

Regularized formulation, optimal design  0.357 Fig. 3¢
Modified opt. design, 3 lumped stiffeners 0444  Fig. 6a
Modified opt. design, 4 lumped stiffeners 0438  Fig. 6b
Modified opt. design, 5 lumped stiffeners 0413  Fig. 6c
Modified opt. design, 6 lumped stiffeners 0.40! Fig. 6d
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Fig. 6. Modified versions qf the optimal design in Fig. 3(c), obtained by lumping the optimal distribution of
integral stiffeners into a finitc number of stiffeners of finite width. The compliances of the modified optimal
designs are given in Table 2.
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lump the infinitely thin stiffeners appropriately (which can be done in different ways), and
obtain the series of modified designs shown in Figs. 6(a)~(d). The compliances of these modified
designs are given in Table 2 together with minimum compliance values determined via the two
earlier and the new formulation for optimal design. We see that even the design with only three
lumped stiffeners has a lower compliance than the minimum value determined via the tradi-
tional formulation for optimal design. For the modified design with six lumped stiffeners, the
compliance is already comparatively close to the compliance of the true optimal design. These
results indicate clearly that optimal designs determined by means of new, regularized for-
mulation are rather insensitive with respect to reasonable modification of the type considered.
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APPENDIX

Here, we give an account of a numerical procedure of successive iterations, which is constructed for solving the
regularized optimization problem with the two design variables u(r) and h,(#). Since the solution methods for the minimum
compliance and the maximum vibration frequency problems are very similar, we shall limit our description to the former
type of problem.

In brief, the method is as follows: Starting with a given design, the finite element method is used for analysis of the
structure such that all quantities pertaining to its deformation are determined. These results are then used to obtain an
improved design by means of recurrence formulae derived from the two optimality conditions (12) and (13) of the problem.
This procedure is repeated until the results become stationary.

The numerical procedure is based on a discretization of the problem, where the axisymmetric plate is sub-divided into a
large number of concentric ring-elements of equal radial extent. Within each element, the design variables u and 4, are
assumed to attain constant values, and a complete third order polynomium for the deflection w is chosen as shape function.
The values of w and w’ at the intersection circles between the elements are used as nodal unknowns. The stiffness matrices
corresponding to D, and D, are easily established by means of the energy expression (10), and it is then a straightforward
matter to determine, for given design () and h,(r), the deflection w, slope w' and curvatures .., ks and k as functions
of r by means of the finite element method.

The development of recurrence formulae from optimality conditions (12) and (13) for improving a given design, will be
outlined next. In order to be consistent with the assumption that the design variables are constant within the individual
elements, it is necessary for the optimality conditions to be elementwise satisfied {12]. Multiply therefore through eqs (12)
and (13) by H(hg.x— h,) and r(1 - u), respectively, and integrate over the interval r, < r<r.,, of each element, k=1,
2,..., K, to obtain

Dmlx—Dx} ﬂ { D'z (L_ 1 )} E.L‘— -
{hmax_h.x & sk * hmlx_hs Ds Dmu % Sk —A+Yk o (AI)
and
2 Eu {.32_’} Eu_pin -
{3": }k Sk + h,‘ . Sk _A+Ak ﬁkv (AZ)

respectively. Here, the subscript  indicates reference to the kth element, and the quantities E,, E,; and S; are given by
i+
Ey= f [(1 - )2 + 21 - v)xdlrdr
£
Tk+1
Ex= f (K + VKgg)Prdr (A3)
n

1
S = i(fin —-rd).
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Recurrence formulae may now be constructed in different ways from eqns (A1) and (A2), but it is essential to recall that
the Lh.s. of eqn (A1), i.e.
- Dmn-Dx __El_k { Dr1 (_l__ 1 )} Ezk
%= {hmx - h.t }k Sk * hmn" hx Ds mn Sk (A4)

identifies the gradient of the compliance 7 with respect to the design variable y, and that the Lh.s. of eqn (A2),

= 30,1, 2 E'* + {3” } b (AS)

is the gradient of 7 with rcspect to the design variable h,. We therefore apply eqn (A1) for determining w(r), and eqn (A2)
for determining h,. In sub—reglons of unconstrained y(r), eqns (Al) and (A3) may be combined to give | =g,A~", and
similarly, we have 1 =gA™"' in sub-regions where h, is unconstrained. Raising these equations to the power n and
multiplying them by u, and h,,, respectively, they take the form g, = u,q,"A™" and hy = h,g," A" On the basis of the
latter equations, we now construct the following recurrence formulae, where the constraints on u and h, are taken into
account,

wlgA i 0<pfeA <1 (A6)

0 if ufq"A"=<0
“Y‘H) =
1 if M[’qk"A"' =1

B if hQe" A < by,
RGD= 3 WA i R <hQ8ATT < gy (A7)
hmn lf h(s"zgk"A_" = hmar

in eqns (A6) and (A7), the superscripts (j) and (j + 1) refer to the designs of the current and the subsequent iteration,
respectively, and the gradients ¢, and g, are determined on the basis of the current design. The value of the power 5 in
eqns (A6) and (A7) is chosen so that the iterative procedure converges.

The formulae {A6) and (A7) possess some disadvantages, however. For example, if the stiffener concentration u(r)
becomes equal to zero in a given region of the interval at some stage of the iteration procedure, u(r) will in all subsequent
iterations remain zero in that region. Moreover, it turns out that after the first few iterations, the iteration history gradually
becomes oscillating. We therefore impose move-limits upon £§*" and A%'", and use the following revised recurrence
formulae,

max{(1- &uf, 0} if uPq A" <max{(l-&uf, 0}
pf0 =1 ufg A if max{(1- Haf, 0}< pPg"A™" < min{(1+ Huf, 1} (A8)
min {(1+ &uf, 1} if wfq A" 2 min{(1+ Huf, 1)
max {(1- L, hnie} if hR&"A™" < max{(1 - HAY, hoin}
RS0 =3 kg A if max{(1 - AR, i} < Q2" A" <min{(1+ HAR, hpas} (A9)
min {(1 + 84D, hpaxt if A A7 = min {(1 + A, Apax).

The move-limit parameter ¢ in the recurrence formulae (A8) and (A9) is assigned an initial value, but is automatically
adjusted if the iteration history becomes non-monotonic. Once non-monotonicity occurs, we return to the design of the
previous iteration and then apply the recurrence formulae with a decreased value of £

The Lagrangian multiplier A in eqns (A8) and (A9) is determined from the condition that the total material volume of
the plate is given, cf. the second of eqns (5). The discretized version of this condition is

K
S 1K+ M~ KGNS, ~1 =0, (A10)
=]

With 1§*" and A%V expressed in terms of A by eqns (A8) and (A9), eqn (A10) may be conceived as an implicit, nonlinear
algebraic equation for A, which can be written formally as

G(A)=0. (A11)

Evaluation of G(A) for a given value of A can be directly performed by means of eqns (A8)-(A10), and we easily determine
the A value that satisfies eqn (A11) by applying the bisection method. Note that this method in itself constitutes an iterative
procedure, and that it involves substitution of the A trial value into the r.h.s. of eqns (A8) and (A9) at each jteration step.
The iteration scheme of the numerical solution procedure for our optimization problem may be summarized as follows:
BEGIN  Set iteration counter j = 1. Take u{" and A{{, k=1,..., K, arbitrarily. Take 7” to be-large and assign suitable

values of £ and g
I For the plate with integral stiffener concentration x” and solid plate thickness A, compute bending rigidity
components of eqns (8) and (9). Determine the plate deflection w by means of the finite element method.
Calculate the curvatures by eqn (6). Determine the compliance 7z by eqn (10) and the gradients q¥ and g by

eqns (A3)}(AS).
Il If #7> 70", decrease the move-limit parameter £ and set j=j—1.

Il Apply the bisection method to determine the value of A that satisfies eqn (A10), with x§*" and h4*" given by
eqns (A8) and (A9). By this process, which consists of an inner iteration loop, #¥*" and %" of the new plate
design are also determined.

IV Go to I'if u, and hy, and hence all other iterates, have not converged.

END



